The realization space is [1 1 0 x1 - 1 0 1 1 0 x1 - 1 1 x1 - 1] [0 1 1 -x1^3 - 4*x1^2 + 4*x1 - 1 0 0 1 x1 - 1 -x1^3 - 4*x1^2 + 4*x1 - 1 -x1 + 1 -x1^2] [0 0 0 0 1 1 1 -x1^3 - 3*x1^2 + 5*x1 - 2 -x1^3 - 3*x1^2 + 5*x1 - 2 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^4 + 3*x1^3 - 6*x1^2 + 4*x1 - 1) avoiding the zero loci of the polynomials RingElem[x1, 2*x1 - 1, x1 - 1, x1^3 + 3*x1^2 - 5*x1 + 2, x1^3 + 4*x1^2 - 6*x1 + 2, 2*x1^4 + 6*x1^3 - 13*x1^2 + 7*x1 - 1, x1^4 + 4*x1^3 - 3*x1^2 - 3*x1 + 2, x1^3 + 3*x1^2 - 4*x1 + 1, 2*x1^5 + 6*x1^4 - 12*x1^3 + 4*x1^2 + 2*x1 - 1, x1^5 + 6*x1^4 + x1^3 - 21*x1^2 + 19*x1 - 5, x1^5 + 4*x1^4 - 4*x1^3 - 4*x1^2 + 6*x1 - 2, x1^6 + 6*x1^5 - 23*x1^3 + 27*x1^2 - 12*x1 + 2, x1^5 + 3*x1^4 - 6*x1^3 + 5*x1^2 - 3*x1 + 1, x1^5 + 4*x1^4 - 4*x1^3 - 3*x1^2 + 4*x1 - 1, x1^2 + x1 - 1, x1^4 + 3*x1^3 - 7*x1^2 + 5*x1 - 1, x1^3 + 4*x1^2 - 4*x1 + 1, x1^2 + 4*x1 - 3, x1^2 + 4*x1 - 2, x1^2 + 3*x1 - 2, 2*x1^3 + 6*x1^2 - 11*x1 + 4, x1^6 + 6*x1^5 + 3*x1^4 - 16*x1^3 + 6*x1^2 + 4*x1 - 2, x1^3 + 3*x1^2 - 6*x1 + 3, x1^5 + 6*x1^4 + 2*x1^3 - 18*x1^2 + 14*x1 - 3, x1^3 + 4*x1^2 - 2*x1 - 1, x1^6 + 7*x1^5 + 4*x1^4 - 27*x1^3 + 24*x1^2 - 8*x1 + 1, x1^6 + 7*x1^5 + 5*x1^4 - 25*x1^3 + 16*x1^2 - x1 - 1, x1^6 + 7*x1^5 + 3*x1^4 - 29*x1^3 + 32*x1^2 - 15*x1 + 3]